If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+64t+117=0
a = -16; b = 64; c = +117;
Δ = b2-4ac
Δ = 642-4·(-16)·117
Δ = 11584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11584}=\sqrt{64*181}=\sqrt{64}*\sqrt{181}=8\sqrt{181}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{181}}{2*-16}=\frac{-64-8\sqrt{181}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{181}}{2*-16}=\frac{-64+8\sqrt{181}}{-32} $
| 5v-9=56 | | 47=2u+11 | | -3v^2+17v+20=0 | | 5/7t+5=2/7t=14 | | 103=5y+8 | | 48+8x-12=36 | | 4s−2=62 | | 76=6x-2(x-28) | | 5z+14=44 | | 4(7x)=37 | | 0.2=5^x | | 2x^2-5x-100=0 | | 7-8+7x=48 | | (X^2+10)+7x=180 | | 5b+5=7b | | 20x^2-64x-21=0 | | -8n-6-3n=-6 | | 2.5(x)=2x2−3x+7 | | 9x-49=-60-70 | | 4x2+40x+84=0 | | 7x-4(3x-42)=133 | | X^2/6+5x/2+9=0 | | -3(8p+5)-2(5-23p)=3(9+7p) | | 2y+3=8y | | x+7=−x−7 | | 9/2x-3/2=69/2 | | 56-x=184 | | 5a-6=30÷6 | | 5v+2=-3 | | 121/1=11x/1 | | (7x+6)=5x | | .5(x+3)-0.7(x+3)=-0.2x-0.6 |